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Abstract. In order to simplify shader programming we propose a sys-
tem to specify composable shaders in a functional way directly in typical
implementation languages of modern rendering frameworks. In constrast
to existing pipeline shader frameworks, our system exposes a radically
simplified pipeline, which we purposefully aligned with our basic intuition
of shaders as compositions of per-primitive and per-pixel operations. By
programming the shaders in the host language, we additionally remove
the complexity of handling different programming languages for shaders
and the rest of the framework.
The resulting simplicity lends itself to structure modules purely based
on their semantic, instead of dealing with structure enforced by specific
versions of graphics APIs. Thus our system offers great flexibility when
it comes to reusing and combining shaders with completely different se-
mantics, or when targeting different graphics APIs: our high level shaders
can be automatically translated into the shading language of the backend
(e.g. HLSL, GLSL, CG).
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1 Introduction

Implementing shaders for hardware-accelerated rasterization frameworks like Di-
rectX or OpenGL has become an important part of developing rendering systems.
Even though the flexibility and possibilities in graphics development have dras-
tically improved with the introduction of these shaders over the last few years,
recent advances in “CPU-based” programming languages and software engineer-
ing are often not reflected in shader-programming. Especially the limitations in
terms of shader management in larger software projects cause the tasks of com-
bining shader effects, targeting different hardware, supporting older API versions
or optimizing these shader permutations to become extremely time-consuming,
tiresome, and error-prone.

The C-style definition of a single shader stage program is only simple dur-
ing the primary creation process: As soon as such an effect has to be combined
with other shaders to generate the desired final surface illumination, or has to
be used on another API version or target platform, programmers either tend



to build large, complex Über-Shader constructs with computationally expensive
dynamic branching techniques, or manage hundreds of shader combinations and
permutations manually. Object-oriented approaches [12, 9, 4] and novel Shader
Model 5 functionality (e.g. interfaces [16]) extend procedural languages with
abstractions like interfaces and limit code duplication via inheritance. Inheri-
tance as mechanism for composition however has shortcomings in terms of ad
hoc compositions and re-usability, as each composition has to be stated explic-
itly (see sections 2 and 2) and in terms of extensibility, as extension points have
to be anticipated by providing abstract or virtual methods.

Fig. 1. Example built with composed shader modules (from left to right): transforma-
tion and per-pixel lighting, transformation and texturing, transformation/normal map-
ping/texturing and lighting, transformation/normal mapping/texturing/point sprite
generation and lighting, transformation/normal mapping/texturing/point sprites/thick
line generation and lighting.

We propose a novel shader programming model that emphasizes the semantic
and simple programmability of a shader, based on the following ideas:

– abstract shader stages: by freeing the shader modules from concrete pipeline
stages, we let the programmer specify what he wants his shader modules to
do in an abstract, backend-independent manner

– composition via semantic input/output types: with the introduction of se-
mantically annotated input and output types, these types encode the se-
mantic of what is computed by each shader module, and thus composition
operators can be built, that combine the modules according to the semantic

– fine-tuning of semantics: by providing more detailed information for the se-
mantic types such as computation rates, the programmer can exactly specify
the semantic of his shader

– programming in the host language: by using the host language as a shader
language and providing automatic translation into the shader language of
the backend, we significantly simplify shader programming

Using these ideas to provide a system that automatically combines modules
based on their semantic, we overcome the combinatorial explosion of typical
shader systems where each and every combination has to be specified explicitly:
Modules are typically expressed only in their most general form, and can be com-
posed either statically as hard-coded expressions, or programmatically, which is
useful to generate shaders based on runtime information or whole families of re-
lated shaders. Our high-level shader-code requires a specific functionality to be
defined only once—no matter how often it is combined with other shaders and



on how many target platforms it is deployed—while unneeded calculations are
automatically eliminated. We leave the error-prone task of finding the optimal
shader stage for each computation to the machine, which automatically maps
shaders onto specific pipeline architectures (e.g. DirectX), performs global and
local optimizations and code generation for distinct shader permutations, and
finally emits a backend shader program (e.g. HLSL) comparable to hand-crafted
code.

2 Background

The ancestors of today’s shading languages are Cook’s shade trees [2] and Per-
lin’s image synthesizer [18]. Cook’s shade trees classify independent aspects like
lighting, surface and volume into separate modules called shading processes. As
a mechanism for composition each process is represented as an expression tree
which supports grafting of commonly used expressions into other processes. How-
ever, the underlying model of computation which is purely declarative allows for
no conditional control flow like loops as well as no mutable state. Perlin’s im-
age synthesizer is based on imperative procedures and therefore dissolves these
limitations, but abandons the idea of logically independent shading processes.
Procedures work on streams of fragments, and describe shading computations
after hidden surface removal.

The most prevalent shader languages for real-time rendering (Cg [10], HLSL
[17], and GLSL [7]) follow the shader-per-stage approach. Similarly to Perlin’s
image synthesizer each stage works on streams of objects like vertices, primitives
or fragments. As a consequence they directly reflect the various pipeline stages
of the hardware in the language itself. Although there are little restrictions in
terms of algorithms that can be formulated, a corresponding shader function
must be provided for each of the stages.
Progressive Sampling. Shader languages like HLSL provide procedures as their
main structuring mechanism. Über-Shaders usually implement the sum of all
desired features and use ad-hoc mechanisms like macros and plain text processing
for specialization and feature selection.

Metaprogramming frameworks [12–14, 9] overcome the lack of language level
abstractions by utilizing meta-programming and macros. LibSh [12] provides an
embedded language in C++, utilizing its features like objects and templates for
combining shaders. McCool et al. [11] extends LibSh with algebraic combinators
connection and combination which provides an expressive basis for combining
shader functions.

Elliot [3] proposes Vertigo, an embedded domain specific language written in
Haskell that provides combinators in a very natural way. Based on these combi-
nators, an implementation of a sophisticated shading infrastructure comparable
to RenderMan Shading Language (RSL) [6] is demonstrated, including a subse-
quent compilation process which creates vertex- and fragment-shader programs.

Abstract shade trees [15] are based on a visual programming approach for
shaders, and also provide automatic linkage of shader parameters as well as
semantic operations like vector basis conversion. Although different shader com-
ponents compose well, geometry shaders and tessellation are not treated at all.



Trapp et al. [22] structures GLSL shader code into code fragments, each typed
with predefined semantics. Code fragments may be composed at run-time and
compiled to Über-Shaders. Of course Über-Shaders suffer from bad performance.
Like other metaprogramming approaches the system cannot provide proper se-
mantic analysis and cross-fragment optimization.

Towards Pipeline Shaders. The RenderMan Shading Language by Hanra-
han and Lawson [6] combines the expressiveness of Perlin’s image synthesizer
with independent shader processes introduced by Cook. The concept resembles
object-oriented classes, whereby each virtual method corresponds to an entry
point called by the render system. Subclasses like surface, light and volume may
be attached to surfaces. Furthermore RSL extends the concept with computation
rates, i.e. the notion of inputs varying two different rates: uniform and varying.
Specialized control-flow constructs provide mechanisms for communication be-
tween shaders.

A further refinement for computation rates was introduced by Proudfoot
et al. [19] in their Stanford Real-Time Shading Language (RTSL): constant,
primitive group, vertex and fragment, where the last two rates directly corre-
sponded to the stages of early programmable GPUs. Like Cook’s shade trees [2],
RTSL programs are purely declarative and can therefore be represented as DAGs,
which affects expressiveness (e.g. limited data dependent control flow).

Renaissance [1] takes a more general approach and represents different shader
pipeline stages as single functional shader programs. Parameters implicitly cor-
respond to different computations rates. Compilation automatically lifts expres-
sions into the earliest possible pipeline stage while maintaining semantics. How-
ever, Renaissance lacks support for structuring monolithic shader programs into
well defined reusable modules, and no semantics for lifting expressions to group-
wise shader stages (e.g. geometry shaders) are presented.

Foley and Hanrahan introduce Spark [4], a pipeline shader approach based
on RTSL [19]. Its two-layer approach uses declarative shader graphs on top of
procedural subroutines and therefore combines the approaches of Cook [2] and
Perlin [18]. Spark expands RSL’s idea of treating a shader in an object-oriented
way by using extending, virtual-, and abstract identifiers for compositing and
customizing shaders. Rate-qualifiers and conversions between different rates are
extensible and thus defined individually by each supported pipeline. Different
modules may be composed by using mixin inheritance. Like other Über-Shader
approaches before, Spark does not solve the combinatorial explosion problem
because each composition must be stated explicitly.

3 Design

A Shader as a Pixel-Valued Function. Shader programming targets a highly
parallel execution environment, where shading can be performed independently
for each surface point, therefore functional programming is a natural match
for specifying shaders [2]. Although parts of a shader can be programmed in
procedural style using local variables and loops, a complete shader program only



has a single output value—the target pixel—and can thus be viewed as a single
function. By using tail recursion instead of loops, and higher-order functions for
control-flow it is even possible to map any procedural shader program to a purely
functional representation. Rennaissance [1] is an example of such a functional
approach to shader programming.

Since the output value of a shader expression for a single pixel can be an
aggregate of multiple simple values (e.g. it can contain a colour, a depth value,
etc.), we use the term shader module to denote a shader function with multiple
input and output values. Multiple output values are programmatically handled
by returning a single structure containing the individual output values.

Although our approach is based on the composition of such shader mod-
ules, and thus retains the expressiveness and extensibility of a functional design
(which goes beyond what is possible with the specialised control flow elements
introduced in RSL [6]), we have included control flow functions that are mod-
elled on imperative languages in order to cater to shader programmers that are
used to imperative shader languages. Details on these control flow functions are
given in Sect. 4.
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Semantic Composition of Shader Modules. Combining shader modules
that are formulated as expressions can be done in a pipeline approach, by routing
the output of one component into the input of another component. In order to
derive the necessary composition functions for combining shader modules we
will look at a simple example that combines three shader modules with two
composition operators, namely Sequence and Combine(operator) that are applied
to the individual output fields (see Fig. 2). Note, that the different composition
operators need to be applied to different types of input and output (Normal,
Color, LightPos). We use the term semantic for these types, as they go beyond
the typical notion of data types in a language: both Normal and LightPos are
represented as float vectors, but this does not capture their semantic.



Generalizing from this example, we define the following three basic composi-
tion operators for semantic shader composition, that operate on arbitrary shader
modules each with one or more semantic input types and one or more semantic
output types (see Fig. 3):

Compose(module1,module2) composes the output of the two shader modules.
All output semantics of the two input shader modules must be different.

Sequence(module1,module2, {semantic1, ..., semanticM}) combines the speci-
fied semantics of the supplied shader modules in sequence. The remaining
output semantics of the two input shaders must be different.

Combine(module1,module2, semantic, operator) applies the supplied binary op-
erator to the output of the two input shaders with the given semantic to
return a value of the same semantic. The remaining output semantics of the
two input shader modules must be different.

For all composition operators, the input semantics of the two input shader
modules are allowed to be either partially or completely equal. In this case, the
same value is supplied to both shaders. These basic composition operators add
the concept of semantic-specific operations to the usual composition functions
used in functional languages. On top of these basic composition operators we
can now define a more general composition function that sequences, combines,
and composes multiple shader modules based on their semantic:

Composition(module1, module2, . . . moduleN ,

semantic1 : composition1,
...

...
semanticM : compositionM ,
default : compositiondefault)

where a separate composition operator (either Sequence or Combine(operator))
is specified to combine each semantic and Compose is wrapped around the result.

We provide a number of convenience compositions in our approach, that are
specializations of this general composition function with various predefined func-
tion and operator arguments. For convenience we also predefine simple shaders
for changing semantics (e.g. Pos → Color). An example composition can be
found in Sect. 5.

Our approach of automatically combining shaders based on their semanti-
cally tagged inputs and outputs is inherently more flexible than a static object-
oriented approach as implemented by Spark [4]:

– The object-oriented way of extending functionality by overriding virtual
functions requires, that each possible extension point needs to be foreseen
by the implementer of the base shaders. Since only a limited number of pos-
sible ways of extending functionality can be provided in a typical design of
such base shaders, the extensibility of such an object-oriented approach is
necessarily limited.



– Due to the static way of combining and extending shaders, each and every
new combination of simple shader functions must be explicitly and manually
implemented. Since the number of combinations of simple shaders is expo-
nential in the number of shaders, this leads to a combinatorial explosion that
cannot be handled by a static approach. The use of a composition function
as shown above, makes it possible to automatically combine simple shaders
based on the geometry that needs to be rendered: the rendering framework
can analyse the properties of the geometry, and combine only the simple
shaders that are actually needed for rendering the combination of properties
encountered.

All composition possibilities offered by a static object-oriented approach can
be easily built using a sub-set of the available functionality in our meta-function
approach:

– Each virtual method corresponds to a semantic tag: different simple shaders
can perform different operations on the input with the same semantic tag.
Changing the implementation of one virtual method thus corresponds to
replacing one of the simple shaders in a composition of multiple shaders.

– The effect inheritance in the object-oriented approach can be realised using
the combine composition operator on two simple shaders that correspond to
the base-class implementation and the overriding implementation. By using
a function that ignores the result of the simple shader corresponding to the
base-class the result of the combination corresponds to the result of the
overriding simple shader.

Thus our approach provides a superset of the functionality provided by the
object-oriented approach, and the additional functionality eliminates the large
number of shader combinations that have to be manually specified.

Abstract Stages. The various stages in the shader pipeline can be viewed as
optimizations on the single pixel-value function, in order to reduce the number
of evaluations of various expressions (for an example see Fig. 4).
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Fig. 4. Optimizing the evaluation of a shader expression by evaluating the parts at
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Although in principle, every shader could be formulated as a single function
that returns a pixel value, this would require the implicit interpolation that is
performed between the vertex and fragment stages of the shader pipeline (see
Fig. 4) to be explicitly specified in this function. In order to overcome this
inconvenience, we propose to retain the notion of shader stages, but as opposed



to the multiple hardware stages we only specify two abstract stages, that turn
out to be sufficient in practice :

per-pixel operations :
also called per-fragment operations, these are all the operations that need
to be performed for each pixel or fragment. Typically this includes all tradi-
tional shading operations that affect the material of an object. In functional
notation, these operations perform the mapping: per pixel parameters → per
pixel output.

per-primitive operations :
all operations performed for each primitive (e.g. triangle or line). This typ-
ically encompasses geometric transformations. In functional notation, these
operations perform the following mapping: per primitive parameters → per
primitive output.

Thus all the simple shaders that can be composed in our framework consist
of explicitly specified per-pixel and/or per-primitive operations, and thus each of
our simple shaders can be viewed as either a partial or a fully specified, but still
abstract pipeline of operations (see Fig. 5). Since we do not explicitly specify
operations for a specific hardware pipeline, all our shaders are still specified in
an abstract manner, and need to be explicitly mapped onto the hardware stages
of a concrete pipeline.
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Fig. 5. A simple shader module consists of explicitly specified per-primitive and per-
pixel operations each with their semantic inputs and outputs. This shows the example
from Fig. 4 tagged with semantic inputs and outputs.

Note that in our current implementation the tessellation stages are repre-
sented in a very hardware-like manner and can therefore not be composed with
each other. They can however still be composed with other per-primitive opera-
tions. In order to overcome this limitation one would have to define tessellation
functionality in a more abstract way, where a programmer would need to explic-
itly subdivide each input primitive. Mapping such a program to the hardware
stages would require very sophisticated analysis and may result in inefficient
code. Furthermore the need for composition of tessellation functions turned out
to be very rare in practice. We therefore decided not to introduce such an ab-
straction in our current implementation.

This has some consequences for the composition operators defined in the pre-
vious section: specifically, a per-pixel output of a shader module cannot serve as
an input for a per-primitive shader module. If each shader module that consisted
of a per-geometry stage and a per-pixel stage was viewed as a monolithic block
with no allowed change in the routing of data between the per-geometry and



the per-pixel stage, this would lead to significant limitations on which shader-
modules could be combined.

In order to avoid that, we combine the stages of our shader modules indi-
vidually, i.e. the composition works independently on the per-primitive and on
the per-pixel stage. This makes it possible to combine shader modules as if they
were single stage modules, and retain the intended functionality programmed in
the different stages. The semantically tagged inputs and output of the individual
stages are available for automatic composition with other shader modules.

Thus we extend our concept of shader modules to encompass whole shader
pipelines, on which our composition operators work, retaining the semantic input
and output types between the abstract stages, which is beyond the functionality
of the algebraic combinators of McCool et al. [11].

Optimization. Näıvely mapping such high-level shaders onto the hardware
stages of a concrete pipeline such as the DirectX 11 pipeline results in a lot of
overhead due to a number of possible inefficiencies. In order to provide compa-
rable performance in our system, we perform several optimisations highlighted
in the following section.

Dead Code Elimination. Since our modules are programmed to be maximally
reusable, they are implemented to cover the most general case, and thus provide
a large number of semantic outputs which can be used by other modules that
are placed later in a composition. Thus it is of vital importance for the overall
performance to identify all unused outputs, and eliminate these from the com-
position result: this is done by starting with all used pixel outputs and tracking
all necessary inputs back through the pipeline. All unused inputs and outputs
are removed, essentially performing a dead code elimination step.

Backend Stage Mapping. A typical hardware shader pipeline has a number of
stages that can be used to perform the operations in our pipelined shaders. Based
on the abstract stage, the following optimisation steps are performed:

per-primitive operations :
Since the current (DirectX 11) backend basically offers three stages for ge-
ometry processing (vertex shader, tesselation shader, and geometry shader)
with different capabilities and associated computation rates our composed
modules need to be mapped onto these efficiently. Since the computation
rates for these hardware-stages are generally unknown (we don’t know what
our inputs will look like) we decided to move all operations to the earliest
stage possible, with the underlying assumption, that each operation is thus
performed at the lowest rate. It is, for example, possible to move geometry
shader operations, which are equally performed for all vertices, to the ver-
tex shader. Similar rules can be derived for the other hardware-stages, an
overview of these rules can be found in Sect. 4. A number of additional lim-
itations (due to hardware capabilities) are introduced, e.g, the tessellation-
shader needs to be done prior to a geometry-shader, etc.

per-pixel operations :
pixel or fragment-shaders are divided into two parts: the first part represents



calculations invariant respective to rasterizer-interpolation, which can there-
fore be performed per primitive (in general the faster solution). The second
part consists of all operations that can only be performed in a pixel shader.
This splitting may cause additional traffic for the rasterizer-interpolation
since this may need e.g. the interpolation of a vector instead of a scalar.
Since these costs are hard to estimate we move only operations where the
interpolated type does not exceed the result type in size.

Shader Module Specialization. Since a single generated shader module might
still cover a number of different input-setups (textured vs. non-textured, etc.)
using shader-control-flow we provide methods for simply specialising a shader
module using contextual information (e.g. there are no textures available, etc.)
The shader modules are then partially evaluated using this information and
recompiled for the backend. If, for example, a geometry does not contain normals
the corresponding shader modules are optimised to eliminate any code that
accesses normals of the geometry, thereby improving rendering performance.

Shader Module Unification. Since shaders are compositions of abstract modules
it’s relatively easy to find common operations for them using the high level
information provided by the composition operators. If the rendering performance
can be improved by reducing switches between shaders, two shader modules can
be unified using simple control flow, adding a parameter to select the shader
module as an additional input to the combined shader module.

Common Subexpression Elimination. Although common subexpression elimina-
tion results in optimal code respective to the number of operations, additional
temporary variables stressing the HLSL-compiler need to be introduced. In op-
timizing compilers, sophisticated analysis carefully choose subexpressions to be
considered for code motion (e.g. [8]) in order to limit temporaries. Our system
in contrast heuristically eliminates expressions exceeding a syntactic complexity
threshold. These complexities are based on estimated complexities for all intrin-
sic functions which are simply summed for each expression. With this simple
scheme the HLSL-compiler does a good job in optimizing shaders while main-
taining good compile-time performance.

Constant/Uniform Calculations. All computations resulting in a constant value
(for each draw call) can be pre-calculated by the rendering system. Since a
brute force approach would result in a large number of uniform-parameters only
calculations exceeding a certain complexity (as mentioned above) are considered.

Arithmetic Optimizations. Since there are only very few restrictions on how
to compose shaders (i.e. outputs and inputs must match), it is possible to in-
troduce unnecessary calculations through these compositions (e.g. normalize(
normalize(vector)), (a − a), etc.). Similarly to tree parsers [5], used for in-
struction selection in code generators our optimizer maintains a set of expression
patterns with associated rewrite rules and some estimated cost. Notably, our
system also considers domain-specific knowledge as a variables vector-basis for
further optimization. As an example, ViewMatrix*ModelMatrix is transformed
to use the uniform ModelViewMatrix in order to eliminate expensive matrix
multiplications.



User-Guided Simplification. Additional contextual information can be specified
for shader inputs values. As an example, the user may annotate the vertex colors
to be constant or the normals to be constant per face.

Using these annotations the backend stage mapping can perform further op-
timisations by moving operations to earlier stages. Together with redundancy
removal, dead code elimination, and constant/uniform calculations this can lead
to significantly simplified shaders. As an example, it is unnecessary to interpo-
late face normals in a shader, when the normals are known to be constant per
primitive.

Further Optimization Possibilities. Our abstract pipeline representation is gen-
eral enough to support completely different approaches like perceptual simpli-
fication methods [21], or automatic approaches exploiting temporal coherence
[20], which we will pursue in the future.

4 Implementation

Fig. 6. Shader effects composed with our approach. From left to right: raytraced re-
flections with simple texturing, a composition of an illumination and shadow mapping
shader, and a subsivision shader (all from Sect. 5), as well as a screenshot from our
lighting design application (see Sect. 6) demonstrating texturing and reflective mate-
rials with environment mapping.

Our shading language is implemented as an extension of an existing rendering
framework written in C#. Of course it is possible to implement our expression
tree based approach with any language that provides abstract data types, the
use of anonymous functions significantly reduces the syntactic overhead. A C++
11 implementation would be equivalent to our approach, while a Java implemen-
tation would use anonymous classes instead of anonymous functions.

The expression trees in our approach are created and combined using so
called shader types, which represent predefined data types available to shaders
(e.g. vectors, matrices, textures, aso.). Each shader type provides methods (e.g.
the operators + and – or the dot product) that do not actually perform opera-
tions, but build an expression tree for the corresponding operations. Thus each
expression that specifies a shader module, returns the complete expression tree
for that shader module upon execution.

Due to the flexibility of our functional-style implementation we are not lim-
ited to predefined control flow statements such as the RenderMan Shading Lan-
guage (RSL) [6] : we provide higher-order functions that encapsulate conditional
evaluation and loops. This makes it possible to integrate conditions and loops



into expression trees in typical implementation languages of rendering frame-
works, even if it is not possible to overload intrinsic language constructs such as
the conditional evaluation operator condition ? value1 : value2 and the for loop
for shader types:

var floatVal = Fun.IfThenElse<Float>(c < 1.0f, c, 1.0f);

var initial = new { Index = Int.Zero, Val = Float.Zero };

var diffuse = Fun.Loop(initial, i => i.Index < lightCount,

i => { var dir = light[i.Index] - worldPos.XYZ;

return new { Index = i.Index + 1, Val = i.Val + normal.Dot(dir.Normalized) }; });

As mentioned in Sect. 3, the evaluation of each expression is moved to the
earliest possible stage in any given hardware pipeline. In the following list we
give the conditions for performing the indicated optimizations:

PixelShader → GeometryShader : An expression can be moved, if it com-
prises a linear function. Note that functions can be linear under specific
circumstances, e.g. if one function argument is a constant.

GeometryShader → DomainShader/VertexShader : If the same function
is applied to all vertex-dependent inputs (i.e. it appears for each of the
vertices), the function-expression with its arguments can be moved.

DomainShader → HullShader : If an expression does not contain the tessel-
lation coordinate (i.e. the domain location) it can be moved.

DomainShader → HullShaderConstantFunction Similar to DomainShader
→ HullShader.

HullShader → VertexShader : Identical pre-conditions to GeometryShader
→ VertexShader stage.

Although we focussed on the Rules for DirectX 11 and OpenGL 4 we also
implemented an experimental backend for our OpenCL based raytracer, which
only supports one shader-stage computing the color for a primitive at a certain
coordinate. Due to our abstract stage interpretation the modules could easily
be mapped onto this stage when possible (features like tessellation are currently
not supported by the raytracer)

The first step of the compilation process is the creation of a single pipeline
for the completely combined shader modules. This abstract pipeline is then pro-
cessed using the optimisation stages shown in Sect. 3. The output of the opti-
misation process is a complete hardware shader in the shading language of the
backend: in our case a complete HLSL shader for the DirectX 11 backend.

5 Examples

In order to demonstrate the applicability of our approach to common techniques,
we provide code excerpts for per-pixel lighting, shadow mapping and subdivision
(see Fig. 6). Furthermore, we demonstrate the interactive capabilities of our
system in the accompanying video.

The following example shows the full implementation of a basic transfor-
mation pipeline with per-pixel lighting. Note that user-defined parameters are
communicated by name (e.g. "LightPosition"), and vertices of primitives sup-
plied to the primitive shader can be accessed using iterators (e.g. .DoByVertex).



We also provide swizzle operators (e.g. .XYZ) including constants (letter O is zero,
letter I is one) for all vector types.

public class PerPixelLighting : Module {

public class Vertex {

public Float4 Pos = Varying.Position;

public Float3 Normal = Varying.Normal;

public Float4 WorldPos = Varying.WorldPosition;

public Float4 Color = Varying.Color;

}

public class Pixel {

public Float4 Color = Varying.Color;

public Pixel(Float3 color, Float alpha = 1) {

Color = new Float4(color, alpha);

}

}

public Fragment<Pixel> Shader(AnyPrimitive<Vertex> input) {

var transformed = input.DoByVertex(v => {

v.Pos = Uniform.ModelViewProjTrafo * v.Pos;

v.Normal = Uniform.NormalTrafo * v.Normal;

v.WorldPos = Uniform.ModelTrafo * v.Pos;

return v;

});

return transformed.Rasterize(f => {

var dir = (Uniform.LightPositions[0]

- f.WorldPos).XYZ.Normalized;

return new Pixel(dir.Dot(f.Normal.Normalized) * f.Color.XYZ,

f.Color.W);

});

}

}

Geometry vertex colors are automatically bound to the Varying.Color in-
put. Here we demonstrate the composability of modules by combining per-pixel
lighting from the previous listing with a simple shadow mapping module.

public class ShadowMapping : Module {

public Float4x4 ShadowMapTrafo; // transformation

public Texture2D ShadowMap;

private Float3 GetShadowTexCoord(Float4 worldPos) {

var p = ShadowMapTrafo * worldPos; var pp = p.XYZ / p.W;

var tc = new Float3((Float2.II + pp.XY) * 0.5f, pp.Z);

tc.Y = 1 - tc.Y; return tc;

}

public Fragment<Pixel> Shader(AnyPrimitive<Vertex> input) {

return input.Rasterize(f => {

var mytc = GetShadowTexCoord(f.WorldPos);

var smValue = ShadowMap.SampleCmp(mytc.XY, mytc.Z);

return new Pixel(f.Color.XYZ * smValue, f.Color.W);

});

}}

Both modules can be simply composed in the following way:
...

var sg = ... // some scene graph node

var shadowMapping = new ShadowMapping();

var surface = Composition.Sequence.Compose(new PerPixelLighting(), shadowMapping);

shadowSurface.ShadowMap = renderTarget.DepthTexture;

shadowSurface.ShadowMapTrafo = ... // the transformation value

sg = sg.Surface(surface);

...

The code shown in this listing assigns values to module inputs by implicitly
creating uniform inputs in the backend code and setting their values using the
renderer infrastructure. These values can thus be changed at runtime.

public Float GetFactor(Float4 p0, Float4 p1) {

var len = (p1.XYZ - p0.XYZ).Length; return Float.Clamp(len / MaxLineLength, 1, 64);

}

public Triangle<Vertex> Shader(Triangle<Vertex> input) {

return input.DoByPrimitive( tri => { // tessellation is defined as in OpenGL 4/DirectX 11

var f0 = GetFactor(tri.P1.Pos, tri.P2.Pos); var f1 = GetFactor(tri.P2.Pos, tri.P0.Pos);

var f2 = GetFactor(tri.P0.Pos, tri.P1.Pos); var factors = new TessellationFactors();

factors.EdgeFactors = new[] { f0, f1, f2 }; factors.InnerFactors[0] = (f0 + f1 + f2) / 3.0f;

return factors;

},

(tri, constant, crd) => return new Vertex() { Pos = Float4.Lerp(tri.P0.Pos, tri.P1.Pos, tri.P2.Pos, crd) });

}

The previous example shows a simple subdivision operation mapped to the
DirectX 11 tessellation stages. The first anonymous function which calculates the
tessellation factors can return any custom type inheriting from Tessellation

Factors. The constant argument in the interpolation function then refers to
that type. Although it would theoretically be possible to create arbitrary output
triangles for a given input patch using the DirectX/OpenGl tessellation stages we
decided to expose the functionality as provided by our main backend. The first
lambda function basically corresponds to the Hull-/TessellationControl-Shader
and the second to the Domain-/TessellationEvaluation-Shader.



6 Analysis

A Real-World Comparison. We evaluated our concept by re-implementing
all shaders used in a production-quality real-world application for lighting design:
it uses shaders for computing global illumination, for drawing lines and points in
debugging and editing views, and for rendering a number of different materials
with diffuse, and specular components and environment maps for realistic looking
reflections. The complexity of shaders ranges from simple flat-shading all the way
to a global-illumination shader that needs to perform polygon clipping for each
rendered pixel (see Fig. 6 as well as the demonstration in the accompanying
video). The original HLSL implementation had 37 modules with a total of 2324
lines and compiled in 7.5 seconds. Our new semantically composed shaders with
the same functionality consists of 20 modules with a total of 1148 lines and
compiled in 11.8 seconds. Thus we were able to roughly halve the number of code-
lines as well as the number of modules, while maintaining comparable shader-
compile-times and shader performance. Due to the high level of reuse enabled by
our shader modules, the shader modules implemented for this application are a
lot less specific, and can therefore be reused in a number of future applications.

Performance. We evaluated our performance using three sample shaders:

skinning: renders two animated simple meshes replicated 50 times without
hardware instancing with standard skinning and diffuse lighting, where skin-
ning is performed with a maximum of four bone influences per vertex.

tesselation: subdivides all 871414 triangles of the Stanford dragon to 1-pixel-
sized triangles using simple interpolation of positions, normals and light
direction, and applies diffuse lighting.

shadow mapping: renders a shadow mapped Standard dragon using a pre-
calculated shadow map. A 9x9 Gaussian filter implemented in the pixel
shader is used to blur the shadow.

All our tests were performed on an Intel(R) Core(TM) i7 CPU 930 @ 2.80
GHz system with 12 GB of RAM and a GeForce GTX 480 graphics card.

shader manual new factor

skinning 35 fps 35 fps 1.00
tesselation 178 fps 189 fps 1.06

shadow-map 209 fps 209 fps 1.00

Table 1. Performance results in
frames per second (fps) compar-
ing our new semantic shaders with
manually coded shaders.

shader manual new factor

skinning 140 ms 217 ms (78+139) 1.54
tessellation 46 ms 81 ms (33+48) 1.77

shadow-map 85 ms 110 ms (24+86) 1.30

Table 2. Compile times in milliseconds (ms)
of manually written HLSL code and our new
semantic shader code. The times for the new
shaders are the sum of generation of HLSL from
our source and the HLSL compile time.

In our first evaluation (see Table 1) we compared the final rendering speed
of manually coded shaders with our new shaders. We found that in most cases
our system produced equally fast or faster shader code. We rely on the aggres-
sive optimizations in the compiler backend (HLSL or GLSL) to overcome some



of the deficiencies in our code generator. The tessellation example was slightly
faster since some calculations performed in the DomainShader were automati-
cally moved to the vertex shader.

Our second evaluation (see Table 2) shows the compile times for manually
coded shaders compared to the sum of code generation and compile times for our
new shaders. The additional generation of HLSL from our source code results
in compile-times that are less than 2 times longer for the given examples, an
acceptable overhead given the increased flexibility and reusability.

7 Conclusion and Future Work

We have demonstrated a powerful framework for combining simple shader mod-
ules into complex shaders, by providing semantic composition of modules, an ab-
stract model of two shader stages and a powerful optimizing backend for mapping
this programming model onto existing hardware pipelines. With only moderate
increase in shader compilation time, this results in a significant reduction of code
while retaining the execution performance of hand-coded shaders. Shader com-
position is performed fast enough for interactively combining shaders, allowing
rapid shader development in an explorative manner. Due to the high reusability
of the shader modules of our new approach, we have already started to build
a comprehensive library of modules that can be freely combined and provide a
framework for rapid development of rendering applications that minimises the
necessity of writing shader modules.

In a number of use cases such as volume rendering and global illumination,
we found that using a pure expression based language—although possible—can
be somewhat inconvenient, since it requires a complete reformulation of some
algorithms that can be easily expressed in procedural languages. We therefore
plan to add support for imperative shader fragments while maintaining compos-
ability.
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22. Trapp, M., Döllner, J.: Automated Combination of Real-Time Shader Programs.
In: Cignoni, P., Sochor, J. (eds.) Eurographics 2007 Shortpaper. pp. 53–56. Euro-
graph. Assoc. (2007)


